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Tridendriform algebras [Loday-Ronco, 2004; Chapoton, 2002]

Example

˚ “

` ` ` ` ` ` `

` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` `

Product ˚ is associative, free associated algebra but generated by infinitely many generators
[Loday-Ronco, 1998]

Idea:

Three kinds of trees (looking at the root) : why not splitting in three the product ˚ ?
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Inductive definition of tridendriform products on trees

If T “

tl tr
and S “

sl sr
,

T ă S “
tl tr ˚ S

T ¨ S “
tl tr ˚ sl sr

and T ą S “
T ˚ sl sr

Examples :

ă “ ` `

¨ “

ą “
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Tridendriform algebras

Definition (Loday, Ronco, 2004 ; Chapoton 2002)

A tridendriform algebra is a vector space A endowed with products ă: Ab A Ñ A,
¨ : Ab A Ñ A and ą: Ab A Ñ A, such that:

1 pa ă bq ă c “ a ă pb ˚ cq,

2 pa ˚ bq ą c “ a ą pb ą cq,

3 pa ą bq ă c “ a ą pb ă cq,

4 pa ¨ bq ¨ c “ a ¨ pb ¨ cq,

5 pa ą bq ¨ c “ a ą pb ¨ cq,

6 pa ă bq ¨ c “ a ¨ pb ą cq,

7 pa ¨ bq ă c “ a ¨ pb ă cq,

with ˚ “ă ` ¨ ` ą
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Algebra on packed words WQSym [Duchamp-Hivert-Novelli-Thibon, 2011]

u#v “
ÿ

packpαq“u
packpβq“v

c#

αβ,

where c# “ minpαq ă minpβq for # “ă,
c# “ minpαq “ minpβq for # “ ¨,
and c# “ minpαq ą minpβq for # “ą.

Example :

11 ą 221 “ 22221` 33221` 22331

11 ¨ 221 “ 11221

11 ă 221 “ 11332
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Algebra on packed words WQSym [Duchamp-Hivert-Novelli-Thibon, 2011]

u#v “
ÿ

packpαq“u
packpβq“v

c#

αβ,

where c# “ minpαq ă minpβq for # “ă,
c# “ minpαq “ minpβq for # “ ¨,
and c# “ minpαq ą minpβq for # “ą.

Example :

11 ą 221 “ 22221` 33221` 22331

11 ¨ 221 “ 11221

11 ă 221 “ 11332

Tridendriform products ñ WQSym free tridendriform algebra on infinitely many generators
[Vong, Burgunder-Curien-Ronco, 2015]
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Link with associahedra and permutohedra
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1234

1243 1324 2134

1423 1342 2143 3124 2314

1432 4123 2413 3142 3214 2341

4132 4213 3412 2431 3241

4312 4231 3421

4321
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Simplices Associahedra Hypercubes Permutohedra
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Hypergraphs

Definition

A hypergraph (on vertex set V ) is a pair pV ,E q where:

V is a finite set, (the vertex set)

E is a set of sets of size at least 2, E Ă PpV q.

Example of an hypergraph on r1; 7s

A

B

C
D

4

7 6

5

1

2

3

.
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Hypergraph polytope [Došen, Petrić] (=nestohedra [Postnikov])

1 2

34 1 2

3

4
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Constructs [Postnikov; Curien-Ivanovic-Obradović]

Constructs

A construct of a hypergraph H is defined inductively. For E Ă V pHq (the set of vertices of H),

If E “ V pHq, the construct is the rooted tree with only one node labelled by E ,

Otherwise, denoting by pT1, . . . ,Tnq constructs on every connected component in H ´ E ,
a construct of H can be obtained by grafting these trees on a node labelled by E .

The set of constructs of a given hypergraph labels faces of the associated polytope.

First example:

1 2

34
Ñ

1

234

2

134

3

1

2

4

3

2

1

4

4

3

1

2

4

3

2

1

4

1

23

4

2

13

1, 2

34

1, 3

24

. . .
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First example geometrically

1 2

34
Ñ

1

234

2

134

3

1

2

4

3

2

1

4

4

3

1

2

4

3

2

1

4

1

23

4

2

13

1, 2

34

1, 3

24

. . .
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Let’s practice

1 2 3
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Correspondence Tubings = Constructs = Spines

1 2 3 4

2 3

41

4

1

2 3

1

2

3

3

1 2 3 4 1 2 3 4 1 2 3 4
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Combinatorial interpretation of constructs

Simplex To a k-dimensional face ta1, . . . , aku is associated
the multipointed set pV pHq, ta1, . . . , akuq

t1, 2ut1, 2u

t1, 2u

Cube To a k-dimensional face is associated the set of words
of length n ´ 1 on `, ´ and ‚ with k ‚ (or left-comb trees)

“ `“ ´

“ ‚

Associahedron To a k-dimensional faceis associated a planar
tree on n ´ k nodes.

“ ă“ ą

“ ¨

Permutohedron To a k-dimensional face is associated a
surjection of height k, i.e., a packed word on t1, . . . , n ´ ku

2112

11
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Simplex Hypercube

t1, 2, 3u

t1, 2, 3u

t1, 2, 3ut1, 2, 3u

t1, 2, 3u t1, 2, 3u

t1, 2, 3u

´´

`´

´`

``

´‚

‚´
`‚

‚`

1,2,3

Associahedron Permutohedron

123

213 312

321

231132

122

112 211

221

121

212

111
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Polytope Simplex Hypercube Associahedron Permutohedron

Photo

Associated
hypergraph 1 2

34

1 2

34

1 2

34

1 2

34

Combinatorial
objects

multipointed sets left-comb tree planar trees packed words

Cardinality
2n`1 ´ 1

(A074909)
3n (A013609)

Super-Catalan
(A001003)

Fubini nbrs
(A000670)
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Heuristics for a tridendriform structure

Let HX be a family of hypergraph polytopes, indexed by some finite sets X (sets of vertices of
the associated hypergraphs).
For S “ ApS1, . . . ,Smq and T “ BpT1, . . . ,Tnq two constructs of HX and HY respectively
(X ,Y disjoint), we would like to define the following operations

S ă T as a sum of constructs of HXYY having root A,

S ą T as a sum of constructs of HXYY having root B,

S ¨ T as a sum of constructs of HXYY having root AY B.
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Tridendriform products defined on faces of simplices [Loday-Ronco,
Chapoton]

On simplices, we get the following (triass) products, denoting by pX ,Aq the multipointed set
whose underlying set is X and whose set of pointed elements is A:

pX ,Aq ă pY,Bq “ pX Y Y,Aq
pX ,Aq ą pY,Bq “ pX Y Y,Bq
pX ,Aq ¨ pY,Bq “ pX Y Y,AY Bq
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Tridendriform products defined on faces of hypercubes

Applying this construction to hypercube gives :

u ă v “ u p´|v |q

u ą pv1 ` v2q “

"

pu ‹ v1q ` v2 pv1 ‰ εq
u ` v2 pv1 “ εq

u ¨ pv1 ` v2q “ u p´|v1|q ‚ v2

where each word begins by a ` and the ` denotes the rightmost occurence of `.

Question

How to formalize this construction ?
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Universe and preteam
The considered hypergraphs belong to a set of hypergraphs U, called universe.
A preteam is a pair τ “ ptHa|a P Au,Hq where

- tHa|a P A,Ha P Uu is a set of pairwise disjoint hypergraphs, called participating
hypergraphs

- H P U is a hypergraph such that H “
Ť

aPA Ha, called supporting hypergraph.

Ha0
Ha1 Ha2

Ha3

H
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Strict and semi-strict teams
A preteam is a (resp. semi-strict) strict team if the connected components obtained by
deleting a subset Xa to every hypergraph Ha are in U and included in the connected
components of Hz p

Ť

aPA Xaq (resp. or totally disconnected)

Ha0
Ha1zXa1 Ha2

Ha3zXa3

HzpXa1 Y Xa3q

(Xa0 “ Xa2 “ H)
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Strict and semi-strict teams

A preteam is a (resp. semi-strict) strict team if the connected components obtained by
deleting a subset Xa to every hypergraph Ha are in U and included in the connected
components of Hz p

Ť

aPA Xaq (resp. or totally disconnected)

Examples:

Simplices

Hypercubes

Associahedra

Permutohedra
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Product

Considering a team E and denoting by δ a tuple of constructs of the team’s participating
hypergraphs, we inductively associate to δ a sum of constructs of the supporting hypergraph:

˚pδq “
ÿ

HĂBĎA

q|B|´1 p
ď

bPB

Xbqp˚pδ
B
1 q, . . . , ˚pδ

B
nB
qq, (1)
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Polydendriform structure
Let us introduce new operations

˚Bpδq “ p
ď

bPB

Xbqp˚pδ
B
1 q, . . . , ˚pδ

B
nB
qq

such that the product splits
˚pδq “

ÿ

HĂBĎA

q|B|´1 ˚B pδq

It satisfies relations:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

˚B2 A2 “
˚B2

˚

A

A1
a0

if B2 Ď Azta0u

˚B2 A2 “
˚B

˚B 1

A

A1
a0

if B2 ­Ď Azta0u
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Associative clan
A set of (resp. semi-strict) strict team with ”good” closure properties is called strict clan (each
connected component obtained from the supporting hypergraph is itself a supporting
hypergraph of a team).

XB

∗δB1

Ha1

Ha2
Cb C(b,i)

Xb

Ha3

Ha0

XB′
τ

Hb0 X(a0,b)

C(a0,b)

τ ′

Hb1 Hb2

Ã

Ã′

a0

B

B′

ϕBτ

ϕB
′

τ

XB

∗δB1

Ha1

Ha2
Cb C(b,i)

Xb
Ha3

τ ′′

H(a0,b0)

H(a0,b1)

X(a0,b)

C(a0,b)
H(a0,b2)

Ã′′

B′′

ϕBτ
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Associativity of ˚

Theorem (Curien-D.O.-Obradović, 21+)

Consider a clan C. The product ˚ is associative if

C is strict,

or C is semi-strict and q “ ´1.

Strict clans: Associahedra, Permutohedra, Restrictohedra, . . .

Semi-strict clans: Simplices, Hypercubes, Cyclohedra, . . .
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Restrictohedra

Given K a (possibly infinite) hypergraph.
K-restrictohedron:

UK “ tKX |X Ď K ,X finite and KX connectedu

Theorem (Curien-D.O.-Obradović, 21+)

The clan
ΞK “ ttptKXa |a P Au,KX qu|Xa partition of X and KXa ,KX P UKu

is a strict associative clan.
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Characterization of restrictohedra

Proposition (Curien-D.-O.-Obradović, 21+)

A universe U is of the form UK, for some hypergraph K, if and only if it satisfies the following
four conditions:

(Hierarchy) If H,G P U and G “ H, then G “ H.

(Minimality) If H P U and e P H, if G P U is such that e Ď G, then e P G.

(Restriction) If H P U, and if X Ď H is such that HX is connected, then there exists G P U
such that G “ X .

(Join) If K,L P U are such that K X L is non-empty, then there exists H P U such that
K,L Ă H.
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Ordered universe and Atomicity

Consider K Ď Z.

A clan Ξ is called atomic if for any H in U, there exist H1,H2 P U such that
H1 “ HztminpHqu, H2 “ HztmaxpHqu and both ptttminpHquu,H1u,Hq and
ptH2, ttmaxpHquuu,Hq are in Ξ.

A hypergraph K is graph-like if it has the same connected sets as its restriction to the
graph formed by its vertices and edges.

Proposition

The universe UK is atomic if and only if K is graph-like, and if, for all a ă b ă c P K, if
tb, cu P K and ta, cu P K, then ta, bu P K, and if ta, bu P K and ta, cu P K, then tb, cu P K.
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Translatohedra

For X Ď Z and k P Z,
ShpX , kq “ tx ` k | x P Xu

ShpH, kq “ tShpe, kq|e P Hu

A universe U is closed under translation if, whenever a hypergraph H belongs to U, then so
does ShpH, kq for all k.

Proposition

Let A be a non-empty subset of strictly positive integers that is closed under truncated
subtraction (i.e. if a, b P A and a ă b, then b ´ a P A), and let G be the graph defined from A
as follows:

G “ tt`u|` P Zu Y tShpt0, au, `q|a P A, ` P Zu.

Then UG is atomic and closed by translation. Moreover, every restrictohedron that is atomic
and closed by translation is equivalent to a restrictohedron obtained in this way.
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Friezohedra

1 3 5 7 9 11

2 4 6 8 10

strict associative clan

atomic

closed by translation

between associahedra and permutohedra
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Friezohedra

1 3 5 7 9 11

2 4 6 8 10

n=4
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Compactohedra

Definition

A compactohedron UK is a restrictohedron whose underlying hypergraph over Z, K, satisfies:
(compactness) If there exists e “ ta1, . . . , aku in K, then for any increasing map
f : ta1, . . . aku Ñ Z such that |f pai q ´ f pajq| ď |ai ´ aj | for any i and j , we have
f peq “ tf pa1q, . . . , f pakqu P K.

Proposition

Let k be either a positive integer or `8 and let Gk be the graph defined as follows:

Gk “ tt`u|` P Zu Y tShpt0, pu, `q|1 ď p ď k, ` P Zu.

Then UGk is an atomic compactohedron. Moreover, every atomic compactohedron is
equivalent to a restrictohedron obtained in this way.
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What about the coproduct ?

Try:
∆pSq “

ÿ

c coupe

RcpSq b ˚pFcpSqq ` 1b S

Problem: renormalisation

Conjecture

Only possible for associahedra and permutohedra
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Conclusion and research directions

Get a general frame to define an associative product and tridendriform operations.

Research directions

Are the resulting tridendriform algebras free ?

Study of the polydendriform operad

Operads on polytopes (avec E. Burgunder (IMT, Toulouse) and P.-L. Curien (IRIF))

Link with generalized Tamari order (avec P.-L. Curien (IRIF) et J. Obradović (Serbie))

Thank you !
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