Tridendriform structures on faces of hypergraph associahedra

Bérénice Delcroix-Oger avec Jovana Obradović (Serbian Academy of Science) et Pierre-Louis Curien (CNRS-IRIF, Université de Paris)

ACPMS Online, January 2022

Outline

Prologue

- Participation (2) Hypergraph polytopes (a.k.a. nestoedra)
- 3 Algebraic structures on hypergraph polytopes
- 4 Restrictohedra and associated examples

Outline

Prologue

- 2 Hypergraph polytopes (a.k.a. nestoedra)
- 3 Algebraic structures on hypergraph polytopes
- 4 Restrictohedra and associated examples

* * =

Product * is associative, free associated algebra but generated by infinitely many generators [Loday-Ronco, 1998]

Product * is associative, free associated algebra but generated by infinitely many generators [Loday-Ronco, 1998]

Idea:

Three kinds of trees (looking at the root) : why not splitting in three the product * ?

Inductive definition of tridendriform products on trees

$$f T = \bigvee^{t_{l}} \bigvee^{t_{r}} \text{ and } S = \bigvee^{s_{l}} \bigvee^{s_{r}},$$

$$T < S = \bigvee^{t_{l}} \bigvee^{t_{r}} * S$$

$$T \cdot S = \bigvee^{t_{l}} \bigvee^{t_{r}} * s_{l} \int^{s_{r}} \cdots \int^{s$$

Tridendriform algebras

Definition (Loday, Ronco, 2004 ; Chapoton 2002)

A tridendriform algebra is a vector space A endowed with products $\langle : A \otimes A \rightarrow A,$ $\cdot : A \otimes A \rightarrow A$ and $\rangle : A \otimes A \rightarrow A$, such that:

$$(a < b) \cdot c = a \cdot (b > c)$$

$$\bigcirc (a \cdot b) < c = a \cdot (b < c)$$

with $* = < + \cdot + >$

■ ● ● ● Algebra on packed words WQSym [Duchamp-Hivert-Novelli-Thibon, 2011]

$$u \# \mathbf{v} = \sum_{\substack{\mathsf{pack}(\alpha) = u \\ \mathsf{pack}(\beta) = \mathbf{v} \\ \mathbf{c}_{\#}}} \alpha \beta,$$

where
$$c_{\#} = \min(\alpha) < \min(\beta)$$
 for $\# = <$,
 $c_{\#} = \min(\alpha) = \min(\beta)$ for $\# = \cdot$,
and $c_{\#} = \min(\alpha) > \min(\beta)$ for $\# = >$.

Example :

11 > 221 = 22221 + 33221 + 22331 $11 \cdot 221 = 11221$ 11 < 221 = 11332

Algebra on packed words WQSym [Duchamp-Hivert-Novelli-Thibon, 2011]

$$u \# v = \sum_{\substack{\mathsf{pack}(\alpha) = u \\ \mathsf{pack}(\beta) = v \\ c_{\#}}} \alpha \beta,$$

where
$$c_{\#} = \min(\alpha) < \min(\beta)$$
 for $\# = <$,
 $c_{\#} = \min(\alpha) = \min(\beta)$ for $\# = \cdot$,
and $c_{\#} = \min(\alpha) > \min(\beta)$ for $\# = >$.

Example :

$$11 > 221 = 22221 + 33221 + 22331$$

 $11 \cdot 221 = 11221$
 $11 < 221 = 11332$

Tridendriform products \Rightarrow WQSym free tridendriform algebra on infinitely many generators [Vong, Burgunder-Curien-Ronco, 2015]

Link with associahedra and permutohedra

Hypergraph polytopes (a.k.a. nestoedra)

Outline

Prologue

- Pypergraph polytopes (a.k.a. nestoedra)
 - 3 Algebraic structures on hypergraph polytopes
 - 4 Restrictohedra and associated examples

Simplices

Associahedra

Hypercubes

Permutohedra

Hypergraphs

Definition

A hypergraph (on vertex set V) is a pair (V, E) where:

- V is a finite set, (the vertex set)
- *E* is a set of sets of size at least 2, $E \subset \mathcal{P}(V)$.

Example of an hypergraph on [1; 7]

0 2 0 0

Constructs [Postnikov; Curien-Ivanovic-Obradović]

Constructs

A construct of a hypergraph H is defined inductively. For $E \subset V(H)$ (the set of vertices of H),

- If E = V(H), the construct is the rooted tree with only one node labelled by E,
- Otherwise, denoting by (T_1, \ldots, T_n) constructs on every connected component in H E, a construct of H can be obtained by grafting these trees on a node labelled by E.

The set of constructs of a given hypergraph labels faces of the associated polytope.

First example:

First example geometrically

Let's practice

1-2-3

Correspondence Tubings = Constructs = Spines

Combinatorial interpretation of constructs

Simplex To a k-dimensional face $\{a_1, \ldots, a_k\}$ is associated the multipointed set $(V(H), \{a_1, \ldots, a_k\})$

> {1,2} {1,2} • (1,2) • (1,2)

Cube To a k-dimensional face is associated the set of words of length n - 1 on +, - and \bullet with $k \bullet$ (or left-comb trees)

Associahedron To a k-dimensional face is associated a planar tree on n - k nodes.

Permutohedron To a k-dimensional face is associated a surjection of height k, i.e., a packed word on $\{1, \ldots, n-k\}$

0 2 0 0

0 2 0 0

Polytope	Simplex	Hypercube	Associahedron	Permutohedron
Photo				
Associated hypergraph	4 31 2	4 31 2	4-3 1-2	
Combinatorial objects	multipointed sets	left-comb tree	planar trees	packed words
Cardinality	$2^{n+1} - 1$ (A074909)	3" (A013609)	Super-Catalan (A001003)	Fubini nbrs (A000670)

Algebraic structures on hypergraph polytopes

Outline

1) Prologue

- 2 Hypergraph polytopes (a.k.a. nestoedra)
- 3 Algebraic structures on hypergraph polytopes
 - Restrictohedra and associated examples

Heuristics for a tridendriform structure

Let $\mathbf{H}^{\mathcal{X}}$ be a family of hypergraph polytopes, indexed by some finite sets \mathcal{X} (sets of vertices of the associated hypergraphs).

For $S = A(S_1, \ldots, S_m)$ and $T = B(T_1, \ldots, T_n)$ two constructs of $\mathbf{H}^{\mathcal{X}}$ and $\mathbf{H}^{\mathcal{Y}}$ respectively $(\mathcal{X}, \mathcal{Y} \text{ disjoint})$, we would like to define the following operations

- S < T as a sum of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root A,
- S > T as a sum of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root B,
- $S \cdot T$ as a sum of constructs of $\mathbf{H}^{\mathcal{X} \cup \mathcal{Y}}$ having root $A \cup B$.

○ ○ ③ ○ Tridendriform products defined on faces of simplices [Loday-Ronco, Chapoton]

On simplices, we get the following (triass) products, denoting by (\mathcal{X}, A) the multipointed set whose underlying set is \mathcal{X} and whose set of pointed elements is A:

$$(\mathcal{X}, A) < (\mathcal{Y}, B) = (\mathcal{X} \cup \mathcal{Y}, A)$$
$$(\mathcal{X}, A) > (\mathcal{Y}, B) = (\mathcal{X} \cup \mathcal{Y}, B)$$
$$(\mathcal{X}, A) \cdot (\mathcal{Y}, B) = (\mathcal{X} \cup \mathcal{Y}, A \cup B)$$

Tridendriform products defined on faces of hypercubes

Applying this construction to hypercube gives :

$$u < v = u(-|v|)$$

$$u > (v_1 + v_2) = \begin{cases} (u \star v_1) + v_2 & (v_1 \neq \epsilon) \\ u + v_2 & (v_1 = \epsilon) \end{cases}$$

$$u \cdot (v_1 + v_2) = u(-|v_1|) \bullet v_2$$

where each word begins by a + and the + denotes the rightmost occurence of +.

Question

How to formalize this construction ?

Universe and preteam

The considered hypergraphs belong to a set of hypergraphs \mathfrak{U} , called universe. A preteam is a pair $\tau = (\{\mathbf{H}_a | a \in A\}, \mathbf{H})$ where

- $\{\mathbf{H}_a | a \in A, \mathbf{H}_a \in \mathfrak{U}\}$ is a set of pairwise disjoint hypergraphs, called participating hypergraphs
- $\mathbf{H} \in \mathfrak{U}$ is a hypergraph such that $H = \bigcup_{a \in A} H_a$, called supporting hypergraph.

Strict and semi-strict teams

A preteam is a (resp. semi-strict) strict team if the connected components obtained by deleting a subset X_a to every hypergraph \mathbf{H}_a are in \mathfrak{U} and included in the connected components of $\mathbf{H} \setminus (\bigcup_{a \in A} X_a)$ (resp. or totally disconnected)

$$(X_{a_0} = X_{a_2} = \varnothing)$$

Strict and semi-strict teams

A preteam is a (resp. semi-strict) strict team if the connected components obtained by deleting a subset X_a to every hypergraph \mathbf{H}_a are in \mathfrak{U} and included in the connected components of $\mathbf{H} \setminus (\bigcup_{a \in A} X_a)$ (resp. or totally disconnected)

Examples:

- Simplices
- Hypercubes
- Associahedra
- Permutohedra

Product

Considering a team E and denoting by δ a tuple of constructs of the team's participating hypergraphs, we inductively associate to δ a sum of constructs of the supporting hypergraph:

$$*(\delta) = \sum_{\varnothing \subset B \subseteq A} q^{|B|-1} \left(\bigcup_{b \in B} X_b \right) (*(\delta_1^B), \dots, *(\delta_{n_B}^B)),$$
(1)

Polydendriform structure

Let us introduce new operations

$$*_B(\delta) = (\bigcup_{b \in B} X_b)(*(\delta_1^B), \dots, *(\delta_{n_B}^B))$$

such that the product splits

$$*(\delta) = \sum_{\varnothing \subset B \subseteq A} q^{|B|-1} *_B(\delta)$$

It satisfies relations:

0 0 3 0

Associative clan

A set of (resp. semi-strict) strict team with "good" closure properties is called strict clan (each connected component obtained from the supporting hypergraph is itself a supporting hypergraph of a team).

Associativity of \ast

Theorem (Curien-D.O.-Obradović, 21+)

Consider a clan \mathcal{C} . The product * is associative if

- \mathcal{C} is strict,
- or C is semi-strict and q = -1.
- Strict clans: Associahedra, Permutohedra, Restrictohedra, ...
- Semi-strict clans: Simplices, Hypercubes, Cyclohedra, ...

Restrictohedra and associated examples

Outline

Prologue

- 2 Hypergraph polytopes (a.k.a. nestoedra)
- Algebraic structures on hypergraph polytopes
- 4 Restrictohedra and associated examples

Restrictohedra

Given **K** a (possibly infinite) hypergraph. **K**-restrictohedron:

 $\mathfrak{U}_{\mathbf{K}} = \{\mathbf{K}_X | X \subseteq K, X \text{ finite and } \mathbf{K}_X \text{ connected}\}$

Theorem (Curien-D.O.-Obradović, 21+)

The clan

 $\Xi_{\mathbf{K}} = \{\{(\{\mathbf{K}_{X_a} | a \in A\}, \mathbf{K}_X)\} | X_a \text{ partition of } X \text{ and } \mathbf{K}_{X_a}, \mathbf{K}_X \in \mathfrak{U}_{\mathbf{K}}\}\}$

is a strict associative clan.

Characterization of restrictohedra

Proposition (Curien-D.-O.-Obradović, 21+)

A universe \mathfrak{U} is of the form $\mathfrak{U}_{\mathbf{K}}$, for some hypergraph \mathbf{K} , if and only if it satisfies the following four conditions:

(Hierarchy) If $\mathbf{H}, \mathbf{G} \in \mathfrak{U}$ and G = H, then $\mathbf{G} = \mathbf{H}$.

(Minimality) If $\mathbf{H} \in \mathfrak{U}$ and $e \in \mathbf{H}$, if $\mathbf{G} \in \mathfrak{U}$ is such that $e \subseteq G$, then $e \in \mathbf{G}$.

(Restriction) If $\mathbf{H} \in \mathfrak{U}$, and if $X \subseteq H$ is such that \mathbf{H}_X is connected, then there exists $\mathbf{G} \in \mathfrak{U}$ such that G = X.

(Join) If $K, L \in \mathfrak{U}$ are such that $K \cap L$ is non-empty, then there exists $H \in \mathfrak{U}$ such that $K, L \subset H$.

Ordered universe and Atomicity

Consider $K \subseteq \mathbb{Z}$.

- A clan \equiv is called atomic if for any **H** in \mathfrak{U} , there exist $\mathbf{H}_1, \mathbf{H}_2 \in \mathfrak{U}$ such that $H_1 = H \setminus \{\min(H)\}, H_2 = H \setminus \{\max(H)\}$ and both $(\{\{\{\min(H)\}\}, \mathbf{H}_1\}, \mathbf{H})$ and $(\{\mathbf{H}_2, \{\{\max(H)\}\}\}, \mathbf{H})$ are in \equiv .
- A hypergraph **K** is graph-like if it has the same connected sets as its restriction to the graph formed by its vertices and edges.

Proposition

The universe $\mathfrak{U}_{\mathbf{K}}$ is atomic if and only if \mathbf{K} is graph-like, and if, for all $a < b < c \in K$, if $\{b, c\} \in \mathbf{K}$ and $\{a, c\} \in \mathbf{K}$, then $\{a, b\} \in \mathbf{K}$, and if $\{a, b\} \in \mathbf{K}$ and $\{a, c\} \in \mathbf{K}$, then $\{b, c\} \in \mathbf{K}$.

Translatohedra

For $X \subseteq \mathbb{Z}$ and $k \in \mathbb{Z}$,

 $Sh(X, k) = \{x + k \mid x \in X\}$ $Sh(\mathbf{H}, k) = \{Sh(e, k) | e \in \mathbf{H}\}$

A universe \mathfrak{U} is closed under translation if, whenever a hypergraph **H** belongs to \mathfrak{U} , then so does Sh(**H**, k) for all k.

Proposition

Let A be a non-empty subset of strictly positive integers that is closed under truncated subtraction (i.e. if $a, b \in A$ and a < b, then $b - a \in A$), and let **G** be the graph defined from A as follows:

$$\mathbf{G} = \{\{\ell\} | \ell \in \mathbb{Z}\} \cup \{\mathsf{Sh}(\{0,a\},\ell) | a \in A, \ell \in \mathbb{Z}\}.$$

Then $\mathfrak{U}_{\mathbf{G}}$ is atomic and closed by translation. Moreover, every restrictohedron that is atomic and closed by translation is equivalent to a restrictohedron obtained in this way.

Friezohedra

- strict associative clan
- atomic
- closed by translation
- between associahedra and permutohedra

Friezohedra

Compactohedra

Definition

A compactohedron $\mathfrak{U}_{\mathbf{K}}$ is a restrictohedron whose underlying hypergraph over \mathbb{Z} , \mathbf{K} , satisfies: (compactness) If there exists $e = \{a_1, \ldots, a_k\}$ in \mathbf{K} , then for any increasing map $f : \{a_1, \ldots, a_k\} \to \mathbb{Z}$ such that $|f(a_i) - f(a_j)| \leq |a_i - a_j|$ for any i and j, we have $f(e) = \{f(a_1), \ldots, f(a_k)\} \in \mathbf{K}$.

Proposition

Let k be either a positive integer or $+\infty$ and let \mathbf{G}^k be the graph defined as follows:

$$\mathbf{G}^{k} = \{\{\ell\} | \ell \in \mathbb{Z}\} \cup \{\mathsf{Sh}(\{0, p\}, \ell) | 1 \leq p \leq k, \ell \in \mathbb{Z}\}.$$

Then $\mathfrak{U}_{\mathbf{G}^k}$ is an atomic compactohedron. Moreover, every atomic compactohedron is equivalent to a restrictohedron obtained in this way.

What about the coproduct ?

Try:

$$\Delta(S) = \sum_{c \text{ coupe}} R_c(S) \otimes *(F_c(S)) + 1 \otimes S$$

Problem: renormalisation

Conjecture

Only possible for associahedra and permutohedra

Conclusion and research directions

Get a general frame to define an associative product and tridendriform operations.

Research directions

- Are the resulting tridendriform algebras free ?
- Study of the polydendriform operad
- Operads on polytopes (avec E. Burgunder (IMT, Toulouse) and P.-L. Curien (IRIF))
- Link with generalized Tamari order (avec P.-L. Curien (IRIF) et J. Obradović (Serbie))

Conclusion and research directions

Get a general frame to define an associative product and tridendriform operations.

Research directions

- Are the resulting tridendriform algebras free ?
- Study of the polydendriform operad
- Operads on polytopes (avec E. Burgunder (IMT, Toulouse) and P.-L. Curien (IRIF))
- Link with generalized Tamari order (avec P.-L. Curien (IRIF) et J. Obradović (Serbie))