Arbres en boîtes et hyperarbres décorés

Bérénice Oger

Institut Camille Jordan (Lyon)
Forum des jeunes Mathématicien-ne-s 2013

Mercredi 13 novembre 2013

Sommaire

- Hyperarbres décorés par une espèce
 - Des hypergraphes aux hyperarbres
 - Espèces et hyperarbres décorés

- Lien avec les arbres en boîtes
 - Arbres en boîtes
 - Compter les hyperarbres décorés avec les arbres en boîtes

Introduction

- Hyperarbres définis par C. Berge dans les années 1980
- Poset sur les hyperarbres utilisé par C. Jensen, J. McCammond et J. Meier dans les années 2000 pour l'étude d'un sous-groupe du groupe des automorphismes du groupe libre
- Action du groupe symétrique sur l'homologie du poset des hyperarbres étudiée par F. Chapoton et B.O.

Les formules obtenues font intervenir des hyperarbres décorés.

But:

Compter ces hyperarbres décorés

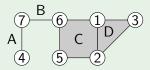
Hypergraphes et hyperarbres

Définition

Un hypergraphe (sur un ensemble V) est un couple (V, E) où :

- V est un ensemble fini, (sommets)
- E est un sous-ensemble de taille au moins 2 de l'ensemble des parties de V, $\mathcal{P}(V)$. (arêtes)

Exemple d'hypergraphe sur [1; 7]



Marche sur un hypergraphe

Définition

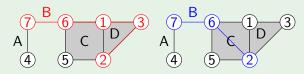
Soit H = (V, E) un hypergraphe.

Une marche d'un sommet d vers un sommet f de H est une suite alternée de sommets et d'arêtes, commençant par d et terminant par f:

$$(d,\ldots,e_i,v_i,e_{i+1},\ldots,f)$$

où pour tout i, $v_i \in V$, $e_i \in E$ et $\{v_i, v_{i+1}\} \subseteq e_i$. La longueur de la marche est le nombre de sommets et d'arêtes de la marche.

Exemples de marches



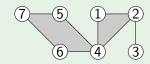
Hyperarbres

Définition

Un hyperarbre est un hypergraphe non trivial H tel que, pour toute paire de sommets distincts v et w de H,

- il existe une marche de v à w dans H avec des arêtes disjointes e_i (H est connexe),
- cette marche est unique (H n'a pas de cycles).

Exemple d'un hyperarbre

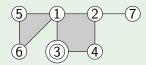


Hyperarbres enracinés

Définition

Un hyperarbre enraciné est un hyperarbre avec un sommet distingué (racine).

Exemple d'un hyperarbre enraciné



Qu'est-ce qu'une espèce?

Définition

Une espèce F est un foncteur de la catégorie des ensembles finis et bijections dans elle-même. A un ensemble fini I, l'espèce F associe un ensemble fini F(I) indépendant de la nature de I.

Qu'est-ce qu'une espèce?

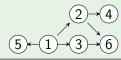
Définition

Une espèce F est un foncteur de la catégorie des ensembles finis et bijections dans elle-même. A un ensemble fini I, l'espèce F associe un ensemble fini F(I) indépendant de la nature de I.

Contre-exemples

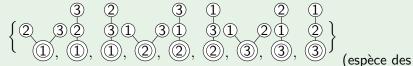
Les ensembles suivants ne peuvent **pas** être obtenus comme l'image d'un ensemble par une espèce :

- $\{(1,3,2),(2,1,3),(2,3,1)(3,1,2)\}$ (ensemble des permutations de $\{1,2,3\}$ avec exactement une descente)
- (graphe de divisibilité de {1,2,3,4,5,6})



Exemples

- $\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\}$ (espèce $\mathbb L$ des listes sur $\{1,2,3\}$)
- $\{\{1,2,3\}\}$ (espèce des ensembles \mathbb{E})
- $\{\{1\}, \{2\}, \{3\}\}$ (espèce des ensembles pointés \mathbb{P})



arbres enracinés A)

Ces ensembles sont les images par des espèces de $\{1,2,3\}$.

Exemples

- $\{(\heartsuit, \spadesuit, \clubsuit), (\heartsuit, \clubsuit, \spadesuit), (\spadesuit, \heartsuit, \clubsuit), (\spadesuit, \clubsuit, \heartsuit), (\clubsuit, \heartsuit, \spadesuit), (\clubsuit, \spadesuit, \heartsuit)\}$ (espèce $\mathbb L$ des listes sur $\{\clubsuit, \heartsuit, \spadesuit\}$)
- $\{\{\heartsuit, \spadesuit, \clubsuit\}\}\$ (espèce des ensembles \mathbb{E})
- $\{\{\heartsuit\}, \{\clubsuit\}, \{\clubsuit\}\}\$ (espèce des ensembles pointés \mathbb{P})

(espèce des

arbres enracinés A)

Ces ensembles sont les images par des espèces de $\{\clubsuit, \heartsuit, \spadesuit\}$.

Hyperarbres décorés

Définition

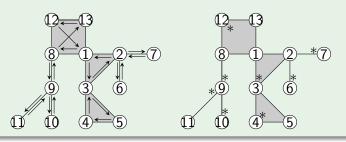
Soit $\mathcal S$ une espèce, un hyperarbre décoré (éventuellement enraciné) est obtenu à partir d'un hyperarbre H (éventuellement enraciné) en choisissant pour chaque arête e de H un élément de $\mathcal S$ (V_e), où V_e est l'ensemble des sommets de l'arête e.

Hyperarbres décorés

Définition

Soit $\mathcal S$ une espèce, un hyperarbre décoré (éventuellement enraciné) est obtenu à partir d'un hyperarbre H (éventuellement enraciné) en choisissant pour chaque arête e de H un élément de $\mathcal S$ (V_e), où V_e est l'ensemble des sommets de l'arête e.

Deux décorations différentes du même hyperarbre H: par l'espèce des cycles et par l'espèce des ensembles pointés.



Séries génératrices

On note $\mathcal{H}_{\mathbb{F}}(n)$ l'ensemble des hyperarbres sur n sommets décorés par l'espèce \mathbb{F} ,

et $\mathcal{H}^p_{\mathbb{F}}(n)$ l'ensemble des hyperarbres sur n sommets enracinés décorés par l'espèce \mathbb{F} .

Les séries génératrices associées sont :

$$\mathcal{S}_{\mathbb{F}}(t) := \sum_{n \geq 2} \# \mathcal{H}_{\mathbb{F}}(n) \frac{t^n}{n!} \text{ et } \mathcal{S}^p_{\mathbb{F}}(t) := \sum_{n \geq 2} \# \mathcal{H}^p_{\mathbb{F}}(n) \frac{t^n}{n!}.$$

Ces séries génératrices sont reliées par :

Proposition

Les séries génératrices des hyperarbres et hyperarbres enracinés vérifient :

$$S_{\mathbb{F}}^{p}(t) = t \cdot S_{\mathbb{F}}'(t).$$

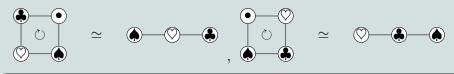
Dérivée d'une espèce

Proposition

Soit F une espèce. On peut définir sa dérivée comme suit :

$$F'(I) = F(I \sqcup \{\bullet\}).$$

Exemple : La dérivée de l'espèce des cycles sur $I = \{\heartsuit, \spadesuit, \clubsuit\}$



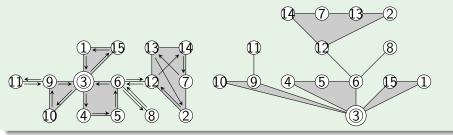
Définition alternative pour la décoration des hyperarbres enracinés

On appelle pétiole, le sommet par lequel l'arête est attachée à la racine.

Proposition

Si H est un hyperarbre enraciné, la décoration de H par une espèce S équivaut au choix pour chaque arête e d'un élément de l'ensemble $\mathcal{S}'\left(V_e^l\right)$, où l'ensemble V_e^l est l'ensemble des sommets de e distincts de la pétiole ou de la racine.

Décoration d'un hyperarbre enracinés par l'espèce des cycles



- Hyperarbres décorés par une espèce
 - Des hypergraphes aux hyperarbres
 - Espèces et hyperarbres décorés

- 2 Lien avec les arbres en boîtes
 - Arbres en boîtes
 - Compter les hyperarbres décorés avec les arbres en boîtes

Considérons le quadruplet (L, V, R, E), où

• L est un ensemble fini d'éléments appelés étiquettes,

Considérons le quadruplet (L, V, R, E), où

- L est un ensemble fini d'éléments appelés étiquettes,
- V est une partition de L dont les éléments sont appelés sommets,

Considérons le quadruplet (L, V, R, E), où

- L est un ensemble fini d'éléments appelés étiquettes,
- V est une partition de L dont les éléments sont appelés sommets,
- R est un élément de V appelé racine,

Considérons le quadruplet (L, V, R, E), où

- L est un ensemble fini d'éléments appelés étiquettes,
- V est une partition de L dont les éléments sont appelés sommets,
- R est un élément de V appelé racine,
- E est une application de $V \{R\}$ dans L appelé l'ensemble des arêtes.

Considérons le quadruplet (L, V, R, E), où

- L est un ensemble fini d'éléments appelés étiquettes,
- V est une partition de L dont les éléments sont appelés sommets,
- R est un élément de V appelé racine,
- E est une application de $V \{R\}$ dans L appelé l'ensemble des arêtes.

On note \tilde{E} , l'application de $V-\{R\}$ dans V qui associe à un sommet v le sommet v' contenant l'étiquette E(v). Le couple $\left(V,\tilde{E}\right)$ forme alors un graphe orienté dont les sommets sont étiquetés par des sous-ensembles de L.

Considérons le quadruplet (L, V, R, E), où

- L est un ensemble fini d'éléments appelés étiquettes,
- V est une partition de L dont les éléments sont appelés sommets,
- R est un élément de V appelé racine,
- E est une application de $V \{R\}$ dans L appelé l'ensemble des arêtes.

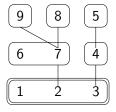
On note \tilde{E} , l'application de $V-\{R\}$ dans V qui associe à un sommet v le sommet v' contenant l'étiquette E(v). Le couple $\left(V,\tilde{E}\right)$ forme alors un graphe orienté dont les sommets sont étiquetés par des sous-ensembles de L.

Définition

Le quadruplet (L, V, R, E) est un arbre en boîte si et seulement si le graphe (V, \tilde{E}) est un arbre, enraciné en R, dont les arêtes sont orientés vers la racine.

L'étiquette I est le parent d'un sommet v si E(v) = I.

Un arbre en boîte

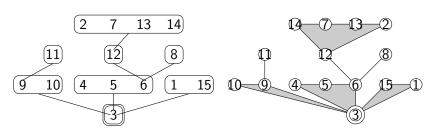


Lien entre hyperarbres enracinés décorés et arbres en boîtes

Proposition

Soit S une espèce, tout hyperarbre enraciné décoré par S, sur k arêtes et n sommets, peut se décomposer en un triplet (r, S, BT) où :

- r est la racine de l'hyperarbre,
- ullet S est un ensemble de k ensembles décorés par \mathcal{S}' sur n-1 sommets,
- et BT est un arbre en boîtes sur k+1 sommets avec une racine étiquetée par r et les autres sommets étiquetés par les ensembles de $\mathbb S$



Comptons les arbres en boîtes

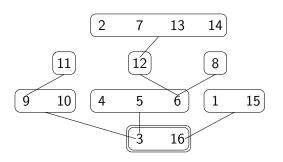
Proposition

Soit L un ensemble fini de cardinal n et V une partition de L en k+1 parts p_0, p_1, \ldots, p_k . Le nombre d'arbre en boîtes qui a pour ensemble d'étiquettes L et pour ensemble de sommets V, est :

$$N_{L,V,p_0}=\#p_0\times n^{k-1}.$$

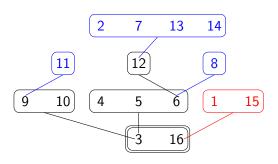
Démonstration.

- Par récurrence
- 2 Code de Prüfer



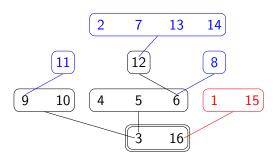
La partition associée est :

$$\{1,15\},\{2,7,13,14\},\{3,16\},\{4,5,6\},\{8\},\{9,10\},\{11\},\{12\}$$



La partition associée est :

$$\{1,15\},\{2,7,13,14\},\{3,16\},\{4,5,6\},\{8\},\{9,10\},\{11\},\{12\}$$

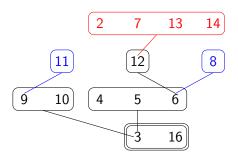


La partition associée est :

$$\{1,15\},\{2,7,13,14\},\{3,16\},\{4,5,6\},\{8\},\{9,10\},\{11\},\{12\}$$

Le code de Prüfer associé est :

16

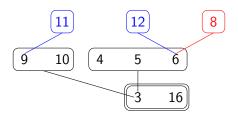


La partition associée est :

$$\{1,15\}, \{2,7,13,14\}, \{3,16\}, \{4,5,6\}, \{8\}, \{9,10\}, \{11\}, \{12\}$$

Le code de Prüfer associé est :

16, **12**

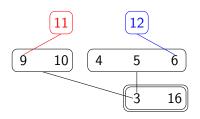


La partition associée est :

$$\{1,15\},\{2,7,13,14\},\{3,16\},\{4,5,6\},\{8\},\{9,10\},\{11\},\{12\}$$

Le code de Prüfer associé est :

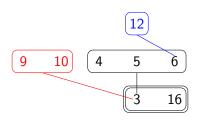
 $16,12,\boldsymbol{6}$



La partition associée est :

$$\{1,15\}, \{2,7,13,14\}, \{3,16\}, \{4,5,6\}, \{8\}, \{9,10\}, \{11\}, \{12\}$$

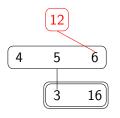
$$16, 12, 6, \bm{9}$$



La partition associée est :

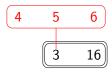
$$\{1,15\}, \{2,7,13,14\}, \{3,16\}, \{4,5,6\}, \{8\}, \{9,10\}, \{11\}, \{12\}$$

$$16, 12, 6, 9, \boldsymbol{3}$$



La partition associée est :

$$\{1,15\}, \{2,7,13,14\}, \{3,16\}, \{4,5,6\}, \{8\}, \{9,10\}, \{11\}, \{12\}$$



La partition associée est :

$$\{1,15\},\{2,7,13,14\},\{3,16\},\{4,5,6\},\{8\},\{9,10\},\{11\},\{12\}$$

$$16,12,6,9,3,6,\boldsymbol{3}$$

Proposition

Soit L un ensemble fini de cardinal n et V une partition de L en k+1 parts p_0, p_1, \ldots, p_k . Le nombre d'arbre en boîtes qui a pour ensemble d'étiquettes L et pour ensemble de sommets V, est :

$$N_{L,V,p_0} = \# p_0 \times n^{k-1}$$
.

La partition associée est :

$$\{1, 15\}, \{2, 7, 13, 14\}, \{\mathbf{3}, \mathbf{16}\}, \{4, 5, 6\}, \{8\}, \{9, 10\}, \{11\}, \{12\}$$

 $\Rightarrow k + 1 = 8 \text{ parts}$

Nombres d'hyperarbres décorés

Théorème

Soit $\mathcal S$ une espèce, les séries génératrices des espèces d'hyperarbres décorés et enracinés décorés s'expriment :

$$S_{S}^{p}(x) = x + \sum_{n \ge 2} \sum_{k=1}^{n-1} E_{S}(k, n-1) n^{k} \frac{x^{n}}{n!},$$
 (1)

et

$$S_{S}(x) = x + \sum_{n \ge 2} \sum_{k=1}^{n-1} E_{S}(k, n-1) n^{k-1} \frac{x^{n}}{n!},$$
 (2)

où $E_{\mathcal{S}}(k,n)$ est le nombre d'ensembles de k ensembles \mathcal{S}' -décorés sur n sommets.

Exemple 1 : Décoration par les listes

• Soit $\mathbb L$ l'espèce des listes. Le nombre de partitions d'un ensemble de cardinal n en k listes est $\binom{n-1}{k-1}\frac{n!}{k!}$. Les séries génératrices des hyperarbres enracinés et creux décorés par $\mathbb L$ sont alors :

$$S_{S}^{p}(x) = x + \sum_{n \ge 2} \sum_{k=1}^{n-1} {n-2 \choose k-1} \frac{(n-1)!}{k!} n^{k} \frac{x^{n}}{n!}.$$

Exemple 2 : Décoration par les ensembles pointés

• Soit $\mathbb P$ l'espèce des ensembles pointés. Le nombre de partitions d'un ensemble de cardinal n en k ensembles pointés est $\binom{n}{k}k^{n-k}$. Les séries génératrices des hyperarbres enracinés et creux décorés par $\mathbb P$ sont alors :

$$S_{S}^{p}(x) = x + \sum_{n>2} \sum_{k=1}^{n-1} {n-1 \choose k} k^{n-1-k} n^{k} \frac{x^{n}}{n!}.$$

Exemple 3 : Décoration par les arbres enracinés

• Soit $\mathbb A$ l'espèce des arbres enracinés. Le nombre de partitions d'un ensemble de cardinal n en k arbres est $\binom{n}{k}k \times n^{n-1-k}$. Les séries génératrices des hyperarbres enracinés et creux décorés par $\mathbb A$ sont alors :

$$S_{S}^{p}(x) = x + \sum_{n \geq 2} n (2n - 1)^{n-2} \frac{x^{n}}{n!}.$$

Merci de votre attention!

[1] Bérénice Oger *Decorated hypertrees*. Journal of Combinatorial Theory A, juillet 2013.