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Goal for today

Understand the following relation:

Hn´3pΠnq “ ΣLie
`

Hn´3pHTnq “ ΣLie
˘

[Stanley, Hanlon, Joyal(1980s), Fresse (2003), Vallette (2007), . . .]
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Posets and chain complexes
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First poset (partially ordered set): Boolean poset (or
lattice)
Consider the set of subsets of a set V , with the partial order given by
inclusion of subsets:

A ď B ô A Ď B

H

t2ut1u t3u

t1, 3ut1, 2u t2, 3u

t1, 2, 3u
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Posets of (set) partitions ΠV

Partitions of a set V :

tV1, . . . ,Vku |ù V ô V “

k
ğ

i“1

Vi ,Vi X Vj “ H for i ‰ j

Partial order on set partitions of a set V :

tV1, . . . ,Vku ď tV 1
1, . . . ,V

1
pu ô @i P t1, pu, Dj P t1, ku s.t. V 1

i Ď Vj

t1ut2ut3ut4u

t1, 2ut3ut4u t1, 3ut2ut4u t1ut2, 3ut4u t1, 4ut2ut3u t1ut2, 4ut3u t1ut2ut3, 4u

t1, 2, 3ut4u t1, 2, 4ut3u t1, 2ut3, 4u t1, 3ut2, 4u t1, 3, 4ut2u t1, 4ut2, 3u t1ut2, 3, 4u

t1, 2, 3, 4u
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Poset cohomology

To any bounded poset P can be associated its order complex (nerve), a
simplicial set whose simplices are the k-chains a0 ă . . . ă ak in Pzt0̂, 1̂u.
The (co)homology of P is the cohomology of its order complex.
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(Co)homology of a poset

Let P be a poset.

CjpPq “ C-vector space of j-chains x0 ă x1 ă . . . ă xj of P ´ t0̂P , 1̂Pu,
with C´1pPq “ C.e

For j ě 0, let us define the differential Bj : CjpPq Ñ Cj`1pPq by:

Bpx0 ă . . . ă xjq “

j`1
ÿ

i“1

ÿ

xi´1ăxăxi

p´1qi px0 ă . . . ă xi´1 ă x ă xi ă . . . ă xjq.

We have BjBj´1 “ 0: pCj , Bjq is a chain complex.
The jth cohomology group is then defined, for any j ě 0, by:

H̃ jpPq “ ker Bj{ im Bj´1.
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What about unbounded posets ?

�

ÑAdd bounds to delete them !

Another definition for the cohomology

ck “ C.ta0 ă . . . ă ak |a0 minimal and ak maximalu

In particular, if P is bounded,

hnpPq » rHn´2pPzt0̂, 1̂uq.
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Cohen-Macaulay posets

Theorem (Björner, 1980)

The partition poset Πn is Cohen-Macaulay (even EL-shellable): all its
cohomology groups vanish but its top one.

Ñ In this case, the Möbius number gives, up to a sign, the dimension of
the unique non trivial cohomology group.

Hence
dim

´

H̃
n´3

pΠnq

¯

“ pn ´ 1q!

Spoiler :

That’s the dimension of the vector space Liepnq !



1

Cohen-Macaulay posets

Theorem (Björner, 1980)

The partition poset Πn is Cohen-Macaulay (even EL-shellable): all its
cohomology groups vanish but its top one.
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What are species?

Definition (Joyal, 80s)

A species F is a functor from Bij to Vect. To a finite set S , the species F
associates a vector space FpSq independent from the nature of S .

Species = Construction plan, such that the vector space obtained is
invariant by relabeling
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Examples of species

C.tp1, 2, 3q, p1, 3, 2q, p2, 1, 3q, p2, 3, 1q, p3, 1, 2q, p3, 2, 1qu (Species of
lists L on t1, 2, 3u)

C.tt1, 2, 3uu (Species of non-empty sets E`)

C.tt1u, t2u, t3uu (Species of pointed sets E‚)

C.
"

1

2 3

, 1

2

3

, 1

3

2

, 2

1 3

, 2

1

3

, 2

3

1

, 3

1 2

, 3

1

2

, 3

2

1
*

(Species of
Cayley trees T)

C.
"

1 2

3

, 1 3

2 *

(Species of cycles)

These sets are the image by species of the set t1, 2, 3u.
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Examples of species

C.tp♡,♠,♣q, p♡,♣,♠q, p♠,♡,♣q, p♠,♣,♡q, p♣,♡,♠q, p♣,♠,♡qu

(Species of lists L on t♣,♡,♠u)

C.tt♡,♠,♣uu (Species of non-empty sets E`)

C.tt♡u, t♠u, t♣uu (Species of pointed sets E‚)
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♠

, ♠
♡ ♣

, ♠
♡
♣
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♠

, ♣
♠
♡

*

(Species of
Cayley trees T)

C.
"

♡ ♠

♣

, ♡ ♣

♠ *

(Species of cycles)

These sets are the image by species of the set t♣,♡,♠u.



2

Substitution of species

Proposition

Let F and G be two species. Let us define:

pF ˝ G qpSq “
à

πPΠpSq

F pπq b
â

JPπ

G pJq,

where ΠpSq runs on the set of partitions of S .

T ˝ TpJ5Kq “

C.
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Operads
A (symmetric) operad O is

a species O with an associative composition

γ : O ˝ O Ñ O

1

2 5

4

3

“

PreLie

[Chap.-
Liv.]

1

2 5

4

3

`

1

2 5

4

3

`

1

2 5

4

3

and a unit i : I Ñ O, where I is the singleton species
(I pSq “ δ|S|“1C).
To each kind of algebra is associated an operad.
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Free operad

Let M be S-module. The free operad over M is the operad whose
underlying species associate to any finite set V the set of rooted trees
whose leaves are labelled by V and whose inner vertices are labelled by an
element of M, with substitution given by grafting on leaves.

Mag operad

When M “ C.tp1, 2q, p2, 1qu, the free operad is called Magmatic operad.
The species MagpV q is the species of planar binary trees with leaves
labelled by V .

13a
˝a

24 “ γ

˜

bca ; a “ 24 , b “ 1 , c “ 3

¸

“
13

24

Any operad can be described as a quotient of a free operad.
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Lie operad

Lie operad encodes Lie algebra. Its underlying vector space is obtained as a
quotient of the Magmatic operad’s vector spaces with the Jacobi relations

32

1

`

21

3

`

13

2

“ 0

and the anti-symmetry

21

“ ´

12

Proposition

The vector space of n-ary operations of Lie operad has dimension
Liepnq “ pn ´ 1q! (comb).
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Post-Lie operad [Vallette, 07 ; Munthe-Kaas–Wright, 08]

The underlying vector space PostLiepVq of post-Lie operad is spanned by
Lie brackets of planar trees with nodes labeled by V . The substitution of a
tree t inside a node v is given by the sum over all the way to graft each
child of v to the right of a node of t (planar pre-Lie product).
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operad has dimension Post-Liepnq “
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Back to the partition posets and Lie operad

CjpΠnq “ C.t0̂Πn “ π´1 ă . . . ă πj`1 “ 1̂Πn |πl P Πn,@l P J´1; j ` 1Ku

Example: leveled cobar
construction

6753241

0

1

2

3

4

Theorem (Fresse, 04)

The action of the symmetric group
on the cohomology of the partition
posets Πn is given by

H̃n´1pΠnq “ Liepnq_ b sgnn

where Liepnq_ is the dual module of
Lie.
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To nested sets

Problem

There are no operadic structure on the leveled cobar construction, but
there is one on the cobar construction !

Solution :

Forget about the levels !
6753241

0

1

2 Ñ
3

4

6753241

This is what we obtain when we consider nested sets instead of chains !
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Building sets and nested sets [De Concini–Procesi, 95 ;
Feichtner–Müller, 05]
Consider L a finite join-semilattice (any nonempty subset has a least upper
bound). For any S Ď L and x P L, we write

SěX “ ty P S |y ě xu.

Definition

A building set is a subset G in L
ă1̂ such that for any x P L

ă1̂ and
maxGěx “ tg1, . . . , gku,there is an isomorphism of posets

rx , 1̂s »

k
ź

i“1

rgi , 1̂s.

A nested set is a subset S of G such that for any set of incomparable
elements x1, . . . , xt in S (t ě 2), the set tx1, . . . , xtu has a greatest lower
bound (meet) which does not belong to G.
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Topological result

The G-nested sets form an abstract simplicial complex, called the nested
set complex.

Proposition (Feichtner–Müller, 05)

Consider a join-semilattice L and an associated building set G. The
associated nested set complex is homotopy equivalent to the order
complex of the poset.

For partition posets

The cobar resolution (for the Commutative operad) corresponds to the
cochain complex of the nested set complex associated with the minimal
building set.



Hypertree posets and postLie operad
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Hypergraphs

Definition (Berge)

A hypergraph (on a set V ) is an ordered pair pV ,E q where:

V is a finite set (vertices)

E is a collection of subsets of cardinality at least two of elements of
V (edges).

Example of a hypergraph on r1; 7s

0

63

4

5

21
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Hypertrees

Definition

A hypertree is a non-empty hypergraph H such that, given any distinct
vertices v and w in H,

there exists a walk from v to w in H with distinct edges ei , (H is
connected),

and this walk is unique, (H has no cycles).

Example of a hypertree

0

63

4

5

10

7

8 9 21
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The hypertree poset

Definition

Let I be a finite set of cardinality n, S and T be two hypertrees on I .

S ĺ T ðñ Each edge of S is the union of edges of T

We write S ă T if S ĺ T but S ‰ T .

0

1

2

3

0

23

1 0

13

2 0

12

3

0

23

1

0

23

1

0

13

2

0

13

2

0

12

3

0

12

3

1

23

0

2

13

0

3

12

0

0

12

3

0

21

3

0

31

2

0

13

2

0

23

1

0

32

1

0

123

0

3

21

0

2

31

0

1

32

0

1

2

3

0

1

3

2

0

2

1

3

0

2

3

1

0

3

1

2

0

3

2

1



3

Euler characteristic of the hypertree posets

Proposition (McCammond-Meier, 2004)

The dimension of the top cohomology group of xHTn is given by:

dim
´

Hn´2p xHTnq

¯

“ p´1qn´1pn ´ 1qn´2

Proposition

The dimension of the top cohomology group of HTn is given by:

dim
`

Hn´2pHTnq
˘

“ p´1qn
p2n ´ 3q!

pn ´ 1q!
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p2n´3q!
pn´1q! ?
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Maximal intervals in HTn are join-semilattices

Lemma

The cartesian product of join-semilattices is a join-semilattice.

Lemma

HTa
n “

ź

vPV paq

Πdegpvq

Proposition

Every maximal interval HT a
n in the hypertree posets is a join-semilattice.
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The nested set complex of hypertrees

The nested sets of hypertrees are the following combinatorial objects:

Definition

A merge tree is a pair pT , τq of trees such that

T is a (non planar) rooted reduced (no vertex
of valency 2) tree with leaves labeled by
t1, . . . , nu

τ is a (non planar oriented) tree whose vertices
are labeled by t0, . . . , nu and whose root is 0

for any internal vertex s in T , the restriction of
τ to edges leaving the leaves above s is
connected

6752341

0

6752341

0

v
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Operadic composition

The operadic composition of a bitree b in a node v is as follows:

the blue children of v are grafted to some nodes in b (pre-Lie
composition)

the bottom tree of b is grafted at the place of the leaf v (usual
magmatic composition)

mπ “

t6ut3, 5ut2, 4ut1u

0

, mt1u “

1

0

, mt2,4u “

42

0

, mt3,5u “

53

0

, mt6u “

6

0

γptpmπq, ptpmpqqpPπq “

653421

0

`

653421

0

`

653421

0

`

653421

0
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Operadic structure on the cohomology of the nested set
complex (aka. post-Lie !)

Let us consider the map

Post-Lie
ϕ
ÝÑ H‚pHT‚q

1 Ÿ 2 ÞÑ
1 2

t1; 2u ÞÑ
1 2

Theorem (DO–Dupont, 22+)

The map ϕ is an operad morphism. The cohomology of the hypertree
poset can be endowed with an operadic structure. It is then isomorphic to
the suspension of post-Lie operad.
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Where does the idea of the composition come from ?
Let us consider the map a : HT0

n Ñ Πn. We define

pHTqďπ :“ a´1 pΠďπq and pHTqěπ :“ a´1 pΠěπq .

Define the maps
φ : pHTqďπ Ñ HTpπq

and
ψ : pHTqěπ Ñ

ź

tPπ

HTptq

obtained respectively by contracting parts of π to an element and splitting
the hypertree according to the parts of π.
The idea is to use these maps to define a composition:

C ‚ pHTpπqq b
â

TPπ

C ‚ pHTpT qq » C ‚ pHTpπqq b C ‚

˜

ź

TPπ

HTpT q

¸

ϕ˚bψ˚

ÝÝÝÝÑ C ‚ pHTďπq b C ‚ pHTěπq Ñ C ‚ pHTnq
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Finally

Other results proven and to come

We obtained an operad on the nested sets which is a model of (the
suspension of) postLie.

By considering chains from the minimal element to anywhere, we
prove that preLie operad as a left post-lie module structure.

1 Ÿ T “ 1 ð T ,

pG ð Dq Ÿ T “ pG Ÿ T q ð D ` G ð pD Ÿ T q

tS ,Tu “ T ð S ´ S ð T ,

where ð is the usual pre-Lie product.

The construction of last slide can be applied to many other examples
: bidecorated partition posets, bidecorated hypertree posets, . . .

Thank you for your attention !
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