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Understand the following relation:

[Stanley, Hanlon, Joyal(1980s), Fresse (2003), Vallette (2007), ...]
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o Posets and chain complexes
e Species and operads

e Hypertree posets and postLie operad



Posets and chain complexes



Consider the set of of a set V, with the partial order given by
of subsets:
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of aset V:
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Partial order on set partitions of a set V:
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To any bounded poset P can be associated its (nerve), a
simplicial set whose simplices are the k-chains ag < ... < ay in P\{0,1}.
The (co)homology of P is the cohomology of its order complex.
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Let P be a poset.

C;(P) = C-vector space of j-chains xo < x; < ... < x; of P — {0p, 1p},
with C_1(P) = C.e
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We have 0;0;_1 = 0: (C;,0;) is a



Let P be a poset.

C;(P) = C-vector space of j-chains xo < x; < ... < x; of P — {0p, 1p},
with C_1(P) = C.e

For j > 0, let us define the differential 0; : C;(P) — Cj41(P) by:

Jj+1

Oxo <...<xj) = Z 2 x0< < X1 <X <X <...<X).
i=1Xi— 1<X<XI

We have 0;0;_1 = 0: (C;,0;) is a
The is then defined, for any j > 0, by:

I:/J(P) = ker @-/im (9j,1. J




Add bounds to delete them !



Add bounds to delete them !

ck = C.{ap < ... < ax|ap minimal and a; maximal}

In particular, if P is bounded,

h"(P) ~ H"2(P\{0,1}).




The partition poset I, is (even EL-shellable): all its
cohomology groups vanish but its top one.

In this case, the gives, up to a sign, the

Hence

dim (H"‘3(n,,)) = (n—1)!



The partition poset I, is (even EL-shellable): all its
cohomology groups vanish but its top one.

In this case, the gives, up to a sign, the

Hence
dim (H"‘3(n,,)) = (n—1)!

Spoiler :

That's the dimension of the vector space Lie(n) !




Species and operads



A F is a functor from Bij to Vect. To a finite set S, the species F
associates a vector space F(S) independent from the nature of S.

Species = Construction plan, such that the vector space obtained is
invariant by relabeling
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Examples of species
o C.{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2), (3,2,1)} (Species of
lists L on {1,2,3})
o C.{{1,2,3}} (Species of non-empty sets ET)
o C.{{1},{2}, {3}} (Species of pointed sets E*)

Byt doed dned &)
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These sets are the image by species of the set {1,2, 3}.

(Species of cycles)




Examples of species

0 C{(V.0.%),(0,%.4),(4,0.%), (4% 0), (% 0 4) (&6 0);
(Species of lists L on {&, O, &})

o C.{{O, M, &}} (Species of non-empty sets ET)
o C{{U},{M},{d}} (Species of pointed sets E*)
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Cayley trees T)
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These sets are the image by species of the set {&, O, #}.

(Species of cycles)



Let F and G be two species. Let us define:

(FoG)(S)= D FMe®GW),

wel(S) Jerm

where 1(S) runs on the set of partitions of S.

T o T([5]) =




A (symmetric) Ois
°a O with an
7: 000 -0

©), ® B
= @ + ®+®
PrelLie
[Chap ® @ ® @ 6
@ Liv.]. @ @

o and a unit i : I — O, where | is the singleton species
(1(S) = 6,5)=1C).

o To each kind of algebra is associated an



A (symmetric) Ois
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o and a unit i : I — O, where | is the singleton species
(/(S5) = 9)51=1C).

o To each kind of algebra is associated an



Let M be G-module. The over M is the operad whose
underlying species associate to any finite set V the set of rooted trees
whose leaves are labelled by V and whose inner vertices are labelled by an
element of M, with substitution given by grafting on leaves.

Mag operad

When M = C.{(1,2),(2,1)}, the free operad is called Magmatic operad.
The species Mag(V) is the species of planar binary trees with leaves
labelled by V.
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Any operad can be described as a quotient of a free operad.




encodes Lie algebra. Its underlying vector space is obtained as a
quotient of the Magmatic operad’s vector spaces with the Jacobi relations

2 3 1 2 3 1
1y/ 3J/ 2Q/
+ + —0

and the anti-symmetry

The vector space of n-ary operations of has dimension
Lie(n) = (n—1)! (comb).




The underlying vector space PostLie(V) of operad is spanned by
Lie brackets of planar trees with nodes labeled by V. The of a
tree t inside a node v is given by the sum over all the way to graft each
child of v to the right of a node of t (planar pre-Lie product).
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PostLie
[Val.]

The vector space of n-ary operations of

has dimension Post-Lie(n) = (2",]1)!-




Ci(N,) =CA0n, =71 < ... <71 = 1n,|m € My, Ve [-1;j + 1]}

Example: leveled cobar
construction

1 4 2 35 7 6

The
of the partition

posets I, is given by

Hp—1(M,) = Lie(n)" ® sgny,

where Lie(n)V is the dual module of
Lie.




Problem
There are no operadic structure on the leveled cobar construction, but
there is one on the cobar construction !

Solution :

Forget about the levels !
1 4 2 35 7 6

1 42 35 7 6

This is what we obtain when we consider nested sets instead of chains !



Consider L a finite join-semilattice (any nonempty subset has a least upper
bound). For any S < £ and x € £, we write

Sex = {yeSly = x}.

A is a subset G in £_; such that for any x € £_; and
maxGsx = {g1, ..., 8k} ,there is an isomorphism of posets
k
[x. 1] ~ ] [l 1.
i=1
A is a subset S of G such that for any set of incomparable
elements x,...,x; in S (t = 2), the set {x1,...,x:} has a greatest lower

bound (meet) which does not belong to G.




The G-nested sets form an abstract simplicial complex, called the

Consider a join-semilattice L and an associated building set G. The
associated nested set complex is to the order
complex of the poset.

For partition posets

The cobar resolution (for the Commutative operad) corresponds to the
cochain complex of the nested set complex associated with the minimal
building set.




Hypertree posets and postLie operad



A (on a set V) is an ordered pair (V, E) where:
o V is a finite set ( )

o E is a collection of subsets of cardinality at least two of elements of

V (edges).

Example of a hypergraph on [1;7]
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A is a non-empty hypergraph H such that, given any distinct
vertices v and w in H,

o there exists a walk from v to w in H with distinct edges €;, (H is
)v

o and this walk is unique, (H has )

Example of a hypertree




Let / be a finite set of cardinality n, S and T be two hypertrees on /.

S < T <= Each edge of S is the union of edges of T
We write S< TifS<ThbutS#T.




The dimension of the top cohomology group of I-/|'\I',, is given by:

dim (H"2(HT,)) = (=1)"*(n — 1)

The dimension of the top cohomology group of HT,, is given by:

dim (H"2(HT,)) = (—1)”—((2,7”__13’))!!




A006963

Number of planar embedded labeled trees with n nodes: (2n-3)!/(n-1)! for n
=>=2,a(l)=1.
(Formerly M3076)

1, 1, 3, 20, 210, 3024, 55440, 1235520, 32432400, 980179200, 33522128640, 1279935820800,
53970627110400, 2490952020480000, 124983451312640000, 6761440164396912000, 393008709555221760000,
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The cartesian product of join-semilattices is a join-semilattice.

HTZZ H I_Ideg(v)
veV(a)

Every maximal interval HT in the hypertree posets is a join-semilattice.

v




The nested sets of hypertrees are the following combinatorial objects:
O

)
Y

k\4k\2576

A merge tree is a pair (T, 7) of trees such that

o T is a (non planar) rooted reduced (no vertex
of valency 2) tree with leaves labeled by

{1,...,n}
o 7 is a (non planar oriented) tree whose vertices A X
are labeled by {0, ..., n} and whose root is 0 43 2 5 776

o for any internal vertex s in T, the restriction of
T to edges leaving the leaves above s is
connected




The operadic composition of a bitree b in a node v is as follows:
o the blue children of v are grafted to some nodes in b (pre-Lie
composition)
o the bottom tree of b is grafted at the place of the leaf v (usual
magmatic composition)
0
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Let us consider the map

Post-Lie > H*(HT.)

2

1 2

(1,2} »

The map ¢ is an operad morphism. The cohomology of the hypertree
poset can be endowed with an operadic structure. It is then isomorphic to
the suspension of post-Lie operad.




Let us consider the map a : HT? — IM,. We define
(HT)<r i=a ' (N<r) and (HT)sr :=a ! (Nxr).

Define the maps
¢: (HT)<r — HT(m)

and

¥ (HT)sr — [ HT(2)

tem
obtained respectively by contracting parts of 7 to an element and splitting
the hypertree according to the parts of 7.
The idea is to use these maps to define a composition:

C* (HT (1) ® ) C* (HT(T)) =~ C* (HT(r)) ® C* (H HT(T)>

Term Ten

* *
PO, C* (HT<r) ® C* (HT ) — C* (HT,)



o We obtained an operad on the nested sets which is a model of (the
suspension of ) postLie.

o By considering chains from the minimal element to anywhere, we
prove that prelie operad as a left post-lie module structure.

1« T=1~T,
(G—D)<T=(G<T)~D+G—~(D<T)
{§;T}=T—~5-S~—~T,

where «~ is the usual pre-Lie product.

o The construction of last slide can be applied to many other examples
. bidecorated partition posets, bidecorated hypertree posets, ...
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